Kernelization Using Structural Parameters on Sparse Graph Classes

نویسندگان

  • Jakub Gajarský
  • Petr Hlinený
  • Jan Obdrzálek
  • Sebastian Ordyniak
  • Felix Reidl
  • Peter Rossmanith
  • Fernando Sánchez Villaamil
  • Somnath Sikdar
چکیده

Meta-theorems for polynomial (linear) kernels have been the subject of intensive research in parameterized complexity. Heretofore, there were meta-theorems for linear kernels on graphs of bounded genus, H-minor-free graphs, and H-topological-minor-free graphs. To the best of our knowledge, there are no known meta-theorems for kernels for any of the larger sparse graph classes: graphs of bounded expansion, locally bounded expansion, and nowhere dense graphs. In this paper we prove meta-theorems for these three graph classes. More specifically, we show that graph problems that have finite integer index (FII) admit linear kernels on hereditary graphs of bounded expansion when parameterized by the size of a modulator to constant-treedepth graphs. For hereditary graph classes of locally bounded expansion, our result yields a quadratic kernel and for hereditary nowhere dense graphs, a polynomial kernel. While our parameter may seem rather strong, a linear kernel result on graphs of bounded expansion with a weaker parameter would for some problems violate known lower bounds. Moreover, we use a relaxed notion of FII which allows us to prove linear kernels for problems such as Longest Path/Cycle and Exact s, t-Path which do not have FII in general graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open problems from Workshop on Kernels

Treedepth-d modulator as a parameter Somnath Sikdar The recent kernelization algorithms in very general sparse graph classes such as graphs of bounded expansion use the structural parameter of a constant-treedepth modulator [1]. The parameter seems natural in these graph classes, but we have not yet investigated its full power also in general graphs. What natural problems admit a polynomial ker...

متن کامل

Meta-kernelization using Well-structured Modulators

Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of ...

متن کامل

Kernel Bounds for Structural Parameterizations of Pathwidth

Assuming the AND-distillation conjecture, the Pathwidth problem of determining whether a given graphG has pathwidth at most k admits no polynomial kernelization with respect to k. The present work studies the existence of polynomial kernels for Pathwidth with respect to other, structural, parameters. Our main result is that, unless NP ⊆ coNP/poly, Pathwidth admits no polynomial kernelization ev...

متن کامل

Polynomial Kernels for Hard Problems on Disk Graphs

Kernelization is a powerful tool to obtain fixed-parameter tractable algorithms. Recent breakthroughs show that many graph problems admit small polynomial kernels when restricted to sparse graph classes such as planar graphs, bounded-genus graphs or H-minor-free graphs. We consider the intersection graphs of (unit) disks in the plane, which can be arbitrarily dense but do exhibit some geometric...

متن کامل

Meta-kernelization with Structural Parameters

Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS’09) and of Fomin et al. (FOCS’10), apply to optimization problems parameterized by solution size. We present meta-kernelization theorems that use a structural parameters of the inp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013